AFRL-IF-RS-TR-2001-21
Final Technical Report
March 2001

g e N ;&%‘i@*

FOUNDATIONS AND SUPPORT FOR SURVIVABLE
SYSTEMS

Cornell University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. AO E297

APPROVED FOR PUBLIC RELEASE; DISTRIB UTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

20010507 06

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-21 has been reviewed and is approved for publication.

. ¥ nad

APPROVED: QLJGW (! /s

JOHN FAUST
Project Engineer

,, >
FOR THE DIRECTOR: W C//

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

FOUNDATIONS AND SUPPORT FOR
SURVIVABLE SYSTEMS

Fred B. Schneider

Contractor: Cornell University

Contract Number: F30602-96-1-0317

Effective Date of Contract: 1 September 1996

Contract Expiration Date: 31 December 1999

Short Title of Work: Foundations and Support For
Survivable Systems

Period of Work Covered: Sep 96 - Dec 99

Principal Investigator: Fred B. Schneider
Phone: (607) 255-7316

AFRL Project Engineer: John C. Faust
Phone: (315) 330-4544

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by John C. Faust, AFRL/IFGB, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting burden for this collection of information is estimeted to average 1 hour per response, including the time for reviewing instructions, searching cxisting data seurces, gathering and maintaining the data neded, and completing and reviewing
the collection of information. Send comments segarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, 1o Washington Headquarters Services, Directorate for Information

Ogerations and Reports, 1215 Jetferson Davis Highway, Suite 1204, Arfington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY fLeave blank) 7. REPORT DATE 3 REPORT TYPE AND DATES COVERED
MARCH 2001 Final Sep 96 - Dec 99
A, TITLE AND SUBTITLE 5. FUNDING NUMBERS
FOUNDATIONS AND SUPPORT FOR SURVIVABLE SYSTEMS C - F30602-96-1-0317
PE - 62301E
PR - EO17
6. AUTHOR(S) TA - 01
Fred B. Schneider WU - 04
" PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 3. PERFORMING ORGANIZATION
Cornell University REPORT NUMBER
Department of Computer Science N/A

4130 Upson Hall
Ithaca NY 14853

e
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Defense Advanced Research Project Agency Air Force Research Laboratory/IFGB AGENCY REPORT NUMBER
3701 North Fairfax Drive 525 Brooks Road AFRLIF-RS-TR-2001-21
Arlington VA 22203-1714 Rome NY 13441-4505 rAEERSm R
11, SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: John C. Faust/IFGB/(315) 330-4544
I E—

12b. DISTRIBUTION CODE

17a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

T
13. ABSTRACT (Maximum 200 words)
Computing systems for managing critical infrastructures must tolerate failures and be resistant to attack. This report presents#

a summary of accomplishments of a project that has explored techniques for building such survivable critical-infrastructure
systems. Mechanisms were developed for ensuring integrity of hosts that execute mobile code and for ensuring
fault-tolerance of computations that are structured in terms of mobile code. Automated techniques for analyzing the
fault-tolerance of distributed systems were also explored. Finally, a research program into security policy enforcement was
initiated, by both characterizing what policies are enforceable and devising new object-code rewriting methods for security
policy enforcement. A list of the publications produced by the project appears as the final section of this report.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Survivable Systems, Agent Integrity, System Fault Tolerance, Enforceable Security Policies, 2
Language-Based Security 16. PRICE CODE

I N U

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 79. SECURITY CLASSIFICATION 20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 glev. 2-89) (EG)
Prescribed by ANS) Std. 23 .18
Nasinned usinn Parform Pro. WHSIDIOR. Oct 84

Table of Contents

Summary of Accomplishments

Detailed Description of Technical Progress
Agent Integrity
Analysis of system fault-tolerance
Enforceable Security Polices
Publications
Patents

OO\ B W

Final Report:
Foundations and Support for Survivable
Systems

F30602-96-1-0317
Principal Investigator: Fred B. Schneider

Department of Computer Science
Cornell University
Ithaca, New York 14853

Summary of Accomplishments

Computing systems for managing critical infrastructures must tolerate fail-
ures and be resistant to attack. This project has explored techniques for
building such survivable critical-infrastructure systems. Mechanisms were
developed for ensuring integrity of hosts that execute mobile code and for
ensuring fault-tolerance of computations that are structured in terms of mo-
bile code. We also explored automated techniques for analyzing the fault-
tolerance of distributed systems. And, finally, we initiated a research pro-
gram into security policy enforcement, by both characterizing what policies
are enforceable and devising new object-code rewriting methods for security
policy enforcement.

A list of the publications produced by the project appears as the final
section of this report. Included among those 22 publications are two books—
a graduate level monograph on reasoning about concurrent programs and a
now widely-cited National Research Council volume on information systems
trustworthiness. Also, two patents in the area of fault-tolerance were granted
to the principal investigator and his industrial collaborators.

Detailed Description of Technical Progress

Agent Integrity

Agents comprising an application must not only survive (possibly malicious)
failures of the hosts they visit, but they must also be resilient to hostile ac-
tions by other hosts. Replication and voting enable an application to survive
some failures of the hosts it visits. Hosts that are not visited by agents of the
application, however, can masquerade and confound a replication scheme.
Two classes of protocols to solve these agent integrity problems were de-
veloped as part of this project [1,9]. One class uses chained cryptographic
certificates; the second class uses cryptographic signature-sharing. We were
then able to unify these protocols by viewing them in terms of delegation.
In each, the principals are sets of hosts (services) and authorization is trans-
ferred from one principal to another.

In some settings, hosts being visited by agents cannot be replicated, so
the preceding protocols do not apply. This led us to investigate protocols for
agent fault-tolerance without host replication.! With these NAP protocols,
execution of an agent A on a host is monitored by agents (napping) on other
hosts [20]. If the failure of A or of the host on which A executes is detected,
then one of the napping agents performs a recovery action. This recovery
action might involve retrying A, dispatching a different agent to some other
host, or alerting the computation’s initiator of a problem. NAP is not resilient
to hostile host failures, but without using replication no scheme can be.

The difficult part of implementing NAP involves coordinating the napping
agents. A protocol that tolerates multiple failures must have multiple agents
napping, each monitoring execution. A coordination protocol is required
to ensure that more than one napping agents does not detect and try to
restart a failed agent. Our initial solutions to the coordination problem were
complex enough that their correctness was suspect. This led us to show that
the problem was actually an instance of the (fail-stop) reliable broadcast
problem that we solved in 1983. And, by refining our 1983 protocol, we
were able to support a broad class of strategies for how napping agents are
disbursed in the network. This broader class of strategies allows our protocols
also to work when the trajectory of an agent folds back on itself, visiting a
host that is still running a napping agent.

1This work is joint with Dag Johansen at the University of Tromsoe (Norway) and
Keith Marzullo at the Univ of California, San Diego.

2

Analysis of system fault-tolerance

Ad hoc reasoning about fault tolerance is unsatisfactory for large, critical-
infrastructure systems. Only rigorous analysis with mechanized support can
give the needed confidence; only a tool that is usable by system designers can
have a real impact. Therefore, we continued our investigations (jointly with
Scott Stoller) into a new verification framework that is specialized to fault tol-
erance [4,13]. The framework, which is based on a stream-processing model of
computation, permits more natural specifications of fault-tolerance require-
ments than general-purpose formalisms and supports mechanized analysis of
system fault-tolerance.

In stream-processing models, each component of a system is represented
by an input-output function describing its behavior. For simplicity, processes
are assumed to communicate only by messages transmitted along unbounded
FIFO channels. Behaviors of a system can be determined from input-output
functions describing the system’s components by doing a fixed-point calcu-
lation. This provides a clean algorithmic basis for our analysis. Each input-
output function encapsulates the implementation of a component, enabling
a convenient separation of local and global analyses. Local analysis verifies
independently for each component that the proposed input-output function
faithfully represents its behavior. Global analysis, in the form of the fixed-
point calculation, determines the system’s behavior from the input-output
functions.

The fixed-point calculation produces a graph, called a message flow graph,
representing possible communication behaviors of the system. Each node of
the graph corresponds to a component, and each edge is labeled with a
description of the sequence of messages sent from: the source node to the
target node. Exact computation of all possible sequences of messages that
might be sent is generally infeasible. So, to help make automated analysis
feasible, our framework supports flexible and powerful approximations, or
abstractions, as they are called in the literature on abstract interpretation.
Traditionally, stream-processing models have not incorporated approxima-
tions. The approximations in our framework enable compact representation
of the highly non-deterministic behavior characteristic of severe failures and
also support abstraction from irrelevant aspects of a system’s failure-free be-
havior. The latter reflects a separation of concerns that is crucial for making
the fault-tolerance analysis tractable.

We use only conservative approximations, so the analysis never falsely

implies that a system satisfies its fault-tolerance requirement. But approxi-
mations do introduce the possibility of false negatives: the analysis might not
establish that a system satisfies its fault-tolerance requirement, even though
it does.

A common approach to modeling failures is to treat them as events that
occur non-deterministically during a computation, thereby making it diffi-
cult to separate the effects of failures from other aspects of the system’s
behavior and, consequently, to model the former more finely than the lat-
ter. In particular, one often wants to avoid case analysis corresponding to
non-determinism in a system’s failure-free behavior, while case analysis corre-
sponding to different combinations of failures appears unavoidable in general
in automated analysis of fault-tolerance. A failure scenario for a system is an
assignment of component failures to a subset of the system’s components. In
our approach, each input-output function is parameterized by possible fail-
ures in the corresponding component; system behavior is analyzed separately
for each failure scenario of interest.

In our framework, possible communications (in a given failure scenario)
between two components are characterized by approximations of values (the
data transmitted in messages), multiplicities (the number of times each value
is sent), and message orderings (the order in which values are sent). Values
and multiplicities are approximated using a form of abstract interpretation
and a form of symbolic computation. Message orderings are approximated
using partial (instead of total) orders.

Our analysis method was implemented in a prototype tool called CRAFT.
And we have used CRAFT to analyze our protocols for agent integrity and
the Oral Messages algorithm for Byzantine Agreement.

Enforceable Security Policies

A security policy defines executions that, for one reason or another, have been
deemed unacceptable. To date, application-independent security policies—
like mandatory and discretionary access control, information flow restrictions,
and resource availability—have attracted most of the attention. But with
the expanding role of computers in our infrastructure, specialized, appli-
cation-dependent security policies are becoming increasingly important. For
example, a system to support mobile code might prevent information leakage
by enforcing a security policy that bars messages from being sent after files
are read. To support electronic commerce, a security policy might prohibit

4

executions in which a customer pays for a service but the seller does not
provide that service.

Over the period of this grant, we developed a mathematical character-
ization of what security policies are enforceable [9]. First, we proved that
enforcement mechanisms cannot exist for security policies that are not safety
properties. Second, we developed a new class of enforcement mechanisms
and proved that it is complete for the set of all enforceable security policies
[22]. Our new class of mechanisms is based on security automata, automata
that accept finite and infinite sequences.

A security automaton serves as an enforcement mechanism for some target
system by monitoring and controlling the execution of that system. Each
action or new state corresponding to a next step that the target system
takes is sent to the security automaton and serves as the next symbol of
that automaton’s input. If the automaton cannot make a transition on an
input symbol, then the target system is about to violate the security policy
specified by the automation, and the target system is terminated.

We demonstrated the practicality of enforcing security policies expressed
using security automata by constructing and evaluating tools to generate
inlined reference monitors that implement security automata for both the
Java Virtual Machine and Intel x86 machines. The first prototype (SASI)
worked for programs written or compiled into Java virtual machine code
(JVML) or Intel’s x86 machine code; a second generation (PoET/PSLang)
refined the approach for JVML. Specifically, given a security automaton SA
that expresses a security policy and given a machine language program P,
both SASI and PoET/PSLang add checks to P that are necessary in order
to ensure that executing P is guaranteed not to violate the security policy
defined by SA. In addition, using standard compiler analyses, our prototypes
attempt to minimize the number of checks inserted.

Using SASI, we experimented with generalizations of two well known se-
curity policies: software fault isolation (SFI) and the Java Standard Security
Manager. Our experiments confirmed that SASI generates code comparable
with hand-coded, heavily optimized SFI tools for the x86, and in fact ex-
ceeds the performance of the hand-coded Java Standard Security Manager.
Furthermore, security automaton specifications of the security policies have
proven to be easy to write, understand, and modify. Using PoET/PSLang,
we showed how to support the Java 2 “stack inspection” security policy with-
out any support from the Java virtual machine. This, for example, allows
Java, 2 programs to be executed on previous generations of the Java run-time

5

system; it also allows deployment of variations and refinements of the Java
security policy.

Publications

(1)

(5)

(6)

(7)

(8)

Y. Minsky, R. van Renesse, F.B. Schneider, and S.D. Stoller. Cryp-
tographic support for fault-tolerant distributed computing. Proc. of
the Seventh ACM SIGOPS FEuropean Workshop “System Support for
Worldwide Applications” (Connemara, Ireland, Sept 1996), ACM, New
York, 109-114.

D. Johansen, R. van Renesse, and F.B. Schneider. Supporting broad
internet access to TACOMA. Proc. of the Seventh ACM SIGOPS Eu-
ropean Workshop “System Support for Worldwide Applications” (Con-
nemara, Ireland, Sept 1996), ACM, New York, 55-58.

F.B. Schneider. Notes on proof outline logic. Deductive Program De-
sign, M. Broy, ed. ASI Vol. F152, Springer-Verlag, Heidelberg, 351-
394.

S.D. Stoller and F.B. Schneider. Automated Analysis of Fault-Tolerance
in Distributed Systems. Proc. First ACM SIGPLAN Workshop on Au-

tomated Analysis of Software, Rance Cleaveland and Daniel Jackson,
eds., (Paris, France, Jan. 1997) ACM, New York, 33-44.

F.B. Schneider. On Concurrent Programming. Springer Verlag, NY,
1997, 473 pages.

F.B. Schneider (ed.). Information Systems Trustworthiness—Interim
Report. Computer Science and Telecommunications Board Commis-
sion on Physical Sciences, Mathematics, and Applications National
Research Council. April 1997.

D. Dolev, R. Reischuk, F.B. Schneider, and H.R. Strong. Report
on Dagstuhl Seminar on Time Services, Schloss Dagstuhl, March 11-
March 15 1996. Real-Time Systems 12, 3 (May 1997), 329-345.

F.B. Schneider. Editorial: New Partnership with ACM. Distributed
Computing 10, 2 (1997), 63.

(9)

(10)

F.B. Schneider. Towards fault-tolerant and secure agentry. Proc. 11th
International Workshop WDAG ’97 (Saarbrucken, Germany, Sept. 1997)
Lecture Notes in Computer Science, Volume 1320, Springer-Verlag,
Heidelberg, 1997, 1-14.

D. Johansen, R. van Renesse, and F.B. Schneider. Operating system
support for mobile agents. Republished in: Readings in Agents, Michael
N. Huhns and Munindar P. Singh eds. Morgan Kaufman Publishers,
San Francisco, California, 1997, 263-266.

D. Gries and F.B. Schneider. Adding the everywhere operator to propo-
sitional logic. Journal of Logic and Computation 8, No. 1 (Feb. 1998).

F.B. Schneider. On Concurrent Programming. Inside Risks 94, Com-
munications of the ACM 41, No. 4 (April 1998), 128.

S.D. Stoller and F.B. Schneider. Automated stream-based analysis of
fault-tolerance. Formal Techniques in Real-time and Fault-tolerant Sys-
tems, Proc. 5th International Symposium FTRTRT’98 (Lyngby, Den-
mark, Sept. 1998), Lecture Notes in Computer Science, Vol. 1486, 113
122.

F.B. Schneider. Towards trustworthy networked information systems.
Inside Risks 101, Communications of the ACM 41, No. 11 (Nov. 1998),
144.

F.B. Schneider. Improving networked information system trustworthi-
ness: A research agenda. Proceedings 21st National Information Sys-
tems Security Conference (Arlington, Virginia, Oct. 1998), National
Computer Security Center, 766.

F.B. Schneider and S.M. Bellovin. Evolving telephone networks. Inside
Risks 103, Communications of the ACM 42, No. 1 (Jan. 1999), 160.

F.B. Schneider (editor). Trust in Cyberspace. National Academy Press,
Dec. 1998, 331 pages.

D. Johansen, R. van Renesse, and F.B. Schneider. Operating System
Support for Mobile Agents. Republished in Mobility: Processes, Com-
puters, and Agents, Dejan S. Milojicic, Frederick Douglis, and Richard

(19)

(20)

(21)

(22)

G. Wheeler (eds.), Addison Wesley and the ACM Press, April 1999,
557-563.

D. Johansen, R. van Renesse, and F.B. Schneider. What Tacoma
Taught Us. Mobility: Processes, Computers, and Agents, Dejan S.
Milojicic, Frederick Douglis, and Richard G. Wheeler (eds.), Addison
Wesley and the ACM Press, April 1999, 564-566.

D. Johansen, K. Marzullo, F.B. Schneider, K. Jacobsen, and D. Zagorod-
nov. NAP: Practical Fault-tolerance for Itinerant Computations. Proc.

19th IEEFE International Conference on Distributed Computing Systems

(June 1999, Austin, Texas), IEEE, 180-189.

F.B. Schneider, S. Bellovin, and A. Inouye. Building trustworthy sys-
tems: Lessons from the PTN and Internet. IEEFE Internet Computing,
3, 5 (November-December 1999), 64-72.

U. Erlingsson and F.B. Schneider. SASI enforcement of security poli-
cies: A retrospective. Proceedings of the New Security Paradigm Work-
shop (Caledon Hills, Ontario, Canada, September 22-24, 1999), Asso-
ciation for Computing Machinery, 1515 Broadway, NY, NY, 87-95.

Patents

(1)

(2)

Transparent fault tolerant computer system. United States Patent
5,802,265, Sept. 1, 1998. Co-inventors: T.C. Bressoud, J.E. Ahern,
K.P. Birman, R.C.B. Cooper, B.Glade, and J.D. Service.

Transparent fault tolerant computer system. United States Patent
9,968,185, Oct. 19, 1999. Co-inventors: T. C. Bressoud, J. E. Ah-
ern, K. P. Birman, R. C. B. Cooper, B. Glade, and J. D. Service.

DISTRIBUTIO

asdddresses

JOHN £+ FAUST
AFRL/JIFGRH

525 BROOKS RD

ROME, NY 13441-435053

CORNELL UNIVERSITY

DEPARTHENT OF COMPUTER SICENCE
4130 UPSON HALL

ITHACA, HNY 146833

AFRLJIFOIL
TECHMICAL LIBRARY
26 ELECTRONIT PKY
ROME NY 13447-4514

ATTENTION:z DTIC-OCL

DEFEMSE TECHNICAL INFO LENTER
8725 JOHN J. KINGMAN ROAD, STE
FT« BELVOIR, VA 22060-6218

DEFEMSE ADVANCED RESTARCH
PROJECTS AGENCY

37017 NORTH FAIRFAX DRIVE
ARLINGTON YA 22203-1714

ATTN: HNAN PFRIMMER

IIT RESEARCH INSTITUTE
201 MILL 37T.

ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LDR, 2950 P.STREET
AREA B, BLDG 542

N LIST

0944

WRIGHT-PATTERSON AFB OH 45433-7745

AFRL/JHESC-TDC
2698 § STREET, BLDS 190

WRIGHT-PATTERSON AFB OH 45433-74604

pL-1

nushar
cof copies

-~

10

ATTH: S5HDL IH PL

US AR®MY SPACE % MISSILE DEF CHD
2.0, 30X 1530

HUNTSVILLE AL 35307-3301

COMMANDER, CODE 4TLOOOD
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAXE CA 93555-5100

CDR, US ARMY AVIATION 8 MISSILE CHD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-0B-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LTIBRARY

MS P364

LOS ALAMOS NATIONAL LABDORATORY
LDS ALAMOS NM B7545

ATTN: D'HORAH HART
AVIATION BRANCH SVC 122.10
FORTDA, 8M 931

800 INDEPENDENLE AVE, §W
WASHINGTON DC 20391

AFTWC/MSY
102 HALL BLVD, STE

31
SAN ANTONIO TX 78243~

5
7016

ATTN: KAROLA M. YOURISON
SOFTWARE ENSINEERING INSTITUTE
4500 FIFTH AVENUE

PITTSEURGH PA 15213

USAF/AIR FORCE RESEARCH LARORATORY
AFRL/VSOSA(LIBRARY~-3LDE 1103)

5 WRIGHT DRIVE

HANSCO® AF3 MA 01731-3004

ATTN: EILEEN LADUKE/DALGD
MITRE CORPORATION
202 BURLINGTON RD
FEDFORD MA D1730

DT3A/
PATRICK G. SULLIVAM, JR.
Y

pL-3

